
Getting Started with UNIX

References : Sumitabha Das

Lecture – 16

Getting Started with UNIX

References : Sumitabha Das

SECTION -C

Introduction
 Pipes
 UNIX Redirection : the three standard files
 Processes : An introduction

PIPES
 Standard input and standard output constitute two

separate streams that can be individually manipulated by
the shell.

 If that be so, cant the shell connect these streams so that
one command take input from the other?

 You know the who command produces a list of users, one
user per line. Lets use redirection to save this output in a
file:

$ who > user.txt
$ cat user.txt
root console Aug 21 07:51 (:0)
projectpts/8 Aug 30 07:51 (pc125.heavens.com)
xyz pts/14 Aug 11 07:51 (pc125.heavens.com)
abc pts/12 Aug 1 07:51 (pc125.heavens.com)
$ wc – l <user.txt

4 Counts the number of user.

 Here, who’s standard output was redirected, and so was wc’s
standard input, and both used the same disk file. The shell can
connect these streams using a special operator, the | (pipe) , and
avoid creation of the disk file.

 You can make who and wc work in combination so that one takes
input from the other:

$ who | wc-l no intermediate files created.
5

 Here the output of the who has been passed directly to the input
of wc, and who is said to be piped to wc.

 When multiple commands are connected this way, a pipeline is
said to be formed.

 It’s the shell that set up this connection and the commands have
no knowledge of it.

 The pipe is the third source and the destination of the standard
input and standard output, respectively.

 You can now use one to count the number of the files in the
current directory:

 $ ls | wc – l
15

Redirection : THE THREE STANDARD
FILES
TERMINAL: The terminal is a generic name that

represents the screen, display or keyboard. Just as we
refer to a directory as file; we’ll also sometimes refer to
the keyboard as terminal.

 We see a command output and error messages on the
terminal(display) , and we sometimes provide the
command input through the terminal (keyboard).

 The shell associates three files with the terminal – two
for display and one for the keyboard.

 Even though our terminal is also represented by specific
device name (/dev/tty), commands don’t usually read
from or write to this file. They perform all terminal
related activity with the three files that the shell makes
available to every command.

 These special files are actually a stream of characters
which many commands see as Input & Output.

 A stream is simply a sequence of bytes. When a user
logs-in, the shell makes available three files
representing three streams.

(1) Standard Input – the file or stream representing
Input, which is connected to the keyboard.

(2) Standard Output – the file or stream representing
output; which is connected to the display.

(3) Standard Error - the file (or stream) representing
error messages that originate from the command or
shell. This is also connected to the display.

Standard Input
 We’ve used the cat & wc command to read disk files.

These commands have an additional method of taking
input. When they are used without arguments , they
read the file representing the standard input.

 This file is indeed special; it can represent three input
sources –
 The keyboard, the default source
A file using redirection with the < symbol.
Another program using a pipeline.

• When you use wc without any argument & have no
special symbols like < and | in the command line, wc
obtain its input from the default source. You’ve to
provide this input from the keyboard & mark the end of
the input with [Ctrl – d]

$ wc
Standard input can be redirected.
It can come from a pipeline or from a file.
[Ctrl – d]
3 (l) 14 (w) 71(c)
 It can reassign the standard input file to a disk file. This

meant it can redirect the standard input to originate from
a file or a disk.

 This reassignment or redirection requires the < symbol.
$ wc < sample.txt (file containing the

above three lines)
3 14 71

 The file name is missing once again, which means that
“wc” doesn’t open sample.txt . It read the standard input
file as a stream but only after the shell reassigned this
stream to a disk.

Standard Output
 All commands displaying output on the terminal

actually write to the “standard output” file as a stream
of characters, and not directly to the terminal as such.

 There are three possible destinations of this stream :
 The terminal, the default destination
 A file using the redirection symbol > and >>
 As input to another program using a pipe.

• The shell can effect redirection of this stream when it
sees the > or >> symbols in the command line.

• You can replace the default destination (the terminal)
with any file by using > (right chevron) operator
followed by the file name :

$ wc sample.txt > newfile
$ cat newfile
3 14 71 sample.txt

 The first command sends the word count of the
sample.txt to newfile; nothing appears on the terminal
screen. If the output doesn’t exist; the shell creates it
before executing the command. If it exists the shell
overwrites it, so use this operator with caution.

 The shell also provides the >> symbol (the right
chevron used twice) to append to a file.

$ wc sample.txt>> newfile (doesn’t disturb existing
content)

Standard Error
 Each of the three standard files is represented by a

number called – file descriptor. A file is opened by
refering to its pathname, but subsequent read & write
operations identify the file by this file descriptor.

 The kernel maintains the table of the file descriptors for
every process running in the system. The first three
slots are generally allocated to the three standard
streams in this manner

0 – Standard Input
1 – Standard Output
2 – Standard Error

 These descriptors are implicitly prefixed to the
redirection symbols. For instance > and >1 mean the
same thing to the shell ; while < and <0 also are
identical.

 We need explicitly use one of these descriptors when
handling the standard error stream. When you enter
an incorrect command or try to open an nonexistent
file, certain diagnostic messages show up on the
screen. This is the standard error stream whose
default destination is the terminal Trying to “cat” a
nonexistent file produces the error stream:

$ cat file1
cat : cannot open file1

Cat fails to open the file & writes to standard error.

Processes
 A process is simply an instance of a running program.
 A process is said to be born when the program starts

execution and remains alive as long as the program is
active.

 After execution is complete the process is said to die.
 A process also has a name, usually the name of the

program being executed.
 The kernel is responsible for the management of

processes. It determines the time and priorities that are
allocated to processes so that multiple processes are
able to share CPU resources.

 It provides a mechanism by which a process is able to
execute for a finite period of time and then relinquish
control to another process.

 Files have attributes and so do processes. Some
attributes of every process are maintained by the kernel
in memory in a separate structure called the process
table. We can say that process table is the inode for
processes.
Two important attributes of a process are:

 The Process –id (PID) : Each process is uniquely
identified by a unique integer called the Process –id
(PID) that is allocated by the kernel when the process is
born. We need this PID to children separately.

 The Parent PID (PPID) : The PID of a parent is also
available as a process attribute. When several
processes have the same PPID, it often makes sense to
kill the parent rather than all its children separately.

The shell Process
 When you log on to a UNIX system, a process is

immediately set up by the kernel. This process represents a
UNIX command which may be sh(Bourne shell), ksh (Korn
shell), csh (C shell) or bash (Bash). Any command that you
key in is actually the standard input to the shell process. This
process remains alive until you logout, when it is killed by
the kernel.

 The shell’s pathname is stored in SHELL, but its PID is
stored in a special “variable”, $$. To know the PID of your
current shell, type :
$ echo $$ The PID of the current shell.
291

The PID of your login shell can’t obviously change as long as
you are logged in. A low PID indicates that the process was
initiated quite early. When you log out and log in again, your
login shell will be assigned a different PID. Knowledge of the

Process Status
 Let’s use ps command to display some process

attributes. The ps command can be seen as the
process counterpart of the file system’s ls command.

 The command reads through the kernel’s data
structures and process tables to fetch the
characteristics of process.

 By default, ps displays the process owned by the user
running the command. If you execute the command
immediately after logging in, what you see could look
like this:

$ ps
PID TTY TIME CMD
291 console 0:00 bash The login
shell of this user

 Ignoring the header, each line (here, only one) shows

PID, the terminal (TTY) with which the process is

associated (the controlling terminal), the cumulative

processor time (TIME) that has been consumed since

the process has been started, and the process name

(CMD).

 You can see that your login shell (bash) has the PID

291, the same number echoed by the special variable

Options to ps:
Process
Options

Significance

- f Full listing showing the PPID (Parent Process ID)
- e or – A All processes including user and system

processes
- u usr Processes of user usr only
- a Processes of all users excluding processes not

associated with terminal.
- l Long listing showing memory related information.
-t term Processes running on terminal term (say ,

/dev/console)

System Processes : (- e or – A)
 Apart from the processes a user generates, a number of

system processes keep running all the time.

 Most of them are not associated with any terminal

(having no controlling terminal .

 They are initiated during system start up and some of

them start when the system goes to the multiuser state.

 To list all processes running on your machine, use the –

e or –A option to ps . On a busy system, this list could

be very long ; we produce below a short list showing

some important system processes.

$ ps –e
PID TTY TIME CMD
0 ? 0:01 sched Takes care of swapping
1 ? 0:00 init Parent of all shells

2 ? 0:00 pageout Part of the kernel – not
executed

3 ? 4:36 fsflush Part of the kernel – not
executed

194 ? 0:00 sendmail Handles all your mails

2931 ? 0:00 in.telne Serves your TELNET
requests.

System processes are easily identified by the ? In the TTY
column: they generally don’t have a controlling terminal.
This means that the standard input and standard output of

Applications
To the great process pool in the sky
 Some processes live forever (such as init), and some

processes reincarnate themselves into a new form (such as
your shell). Ultimately, most processes die of natural causes
-- a program runs to completion.

 Additionally, you can place a process in a kind of suspended
animation, where it waits to be reanimated. And as the
previous example shows, you can terminate a process
prematurely with kill.

 If a command is running in the foreground and you want to
suspend it, press Control-Z:

$ sleep 10
(Press Control-Z)
[1]+ Stopped sleep 10
$ ps
PID PPID USER COMMAND S STIME TIME 18195 16351 mstreic sleep 10 T

Research : More magic demystified
 UNIX has many moving parts. It has system services, devices, memory managers, and more. Luckily, most of these complex machinations are

hidden from view or are made convenient to use through user interfaces, such as the shell and windowing tools. Better yet, if you want to dive in,
specialized tools, such as top, ps, and kill, all are readily available.

 Now that you know how processes work, you can become your own one-person band. Just one request: Freebird!

Resources
 Learn
 Speaking UNIX: Check out other parts in this series.

 AIX and UNIX: The AIX and UNIX developerWorks zone provides a wealth of information relating to all aspects of AIX systems administration and
expanding your UNIX skills.

 New to AIX and UNIX?: Visit the New to AIX and UNIX page to learn more about AIX and UNIX.

 AIX 5L™ Wiki: A collaborative environment for technical information related to AIX.

 Check out other articles and tutorials written by Martin Striecher:
 Across developerWorks and IBM

 Search the AIX and UNIX library by topic:
 System administration
 Application development
 Performance
 Porting
 Security
 Tips
 Tools and utilities
 Java™ technology
 Linux
 Open source

 Safari bookstore: Visit this e-reference library to find specific technical resources

